Biodegradable Polylactide/TiO2 Composite Fiber Scaffolds with Superhydrophobic and Superadhesive Porous Surfaces for Water Immobilization, Antibacterial Performance, and Deodorization
نویسندگان
چکیده
منابع مشابه
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biodegradable polymers and bioactive ceramics are being combined in a variety of composite materials for tissue engineering scaffolds. Materials and fabrication routes for three-dimensional (3D) scaffolds with interconnected high porosities suitable for bone tissue engineering are reviewed. Different polymer and ceramic compositions applied and their impact on biodegradability and bioactivity o...
متن کاملBiodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering
Biodegradable porous polyurethanes scaffold have themselves opportunities in service, including controlled degradation rate, no-toxic degradation products. However, polyurethanes are lack of bioactive groups, which limits their application. This review gives the common modification methods, surface functionalization and blending modification. In finally, the review puts forward to the bulk modi...
متن کاملShrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this s...
متن کاملBiomechanical evaluation of porous biodegradable scaffolds for revision knee arthroplasty.
Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified par...
متن کاملAnisotropic Porous Biodegradable Scaffolds for Musculoskeletal Tissue Engineering
It has been generally accepted that tissue engineered constructs should closely resemble the in-vivo mechanical and structural properties of the tissues they are intended to replace. However, most scaffolds produced so far were isotropic porous scaffolds with non-characterized mechanical properties, different from those of the native healthy tissue. Tissues that are formed into these scaffolds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2019
ISSN: 2073-4360
DOI: 10.3390/polym11111860